
Pilot Architecture and Ontology

OEDA

2 | OEDA - Pilot Architecture and Ontology Design

It’s proposed for
the pilot that three
potential interfaces
to the catalogue are
provided to demonstrate
Foundry’s suitability
for OEDA, using object
viewer, a carbon
application and an
externally hosted web
application to satisfy
the requirement to
provide access without
authentication.

OEDA - Pilot Architecture and Ontology Design | 3

1.0 Summary 4

2.0 Offshore Energy Digital Architecture (OEDA) 5

3.0 Scope 6

4.0 Background 7

5.0 Data Catalogue and Data Sharing Fabric 8

6.0 Foundry Introduction 9

7.0 Data Provider Integration 10

 7.1 Metadata Standards 10

 7.2 Processes 11

 7.3 Technical Limitations 12

 7.4 Pilot Architecture 13

 7.5 External Catalogue Access 14

 7.6 Internal Catalogue Access 14

 7.7 Data Integration 15

 7.8 Data Preparation 16

 7.9 Data Governance 17

 7.10 Data Pipelines and Data Lineage 18

8.0 Foundry Ontology 19

 8.1 Object Types 20

 8.2 Ontology Design 22

 8.3 Object View 25

9.0 Embedding Enterprise Workflows 29

10.0 Conclusion 31

11.0 Appendix A: OEDA Requirements 32

Contents

4 | OEDA - Pilot Architecture and Ontology Design

The Offshore Energy Digital Architecture
(OEDA) project is fundamentally a data
sharing platform that enables awareness
and access to relevant datasets, as well
as the shared analytics, increased use of
data across the sector to support decision
making, increased use of automation,
remote control technologies, and improved
operational efficiency.

The Net Zero Technology Centre has partnered with InDHu, a
start-up that has the principal members responsible for driving the
digital transformation at Airbus, to provide a literature review and
configure Foundry for the pilot in phase 2 of the OEDA project.

OEDA Report 1 - Data Sharing Landscape captured the output of an
extensive literature review that defined the OEDA Requirements
from a consolidated set of recommendations, best practices and
lessons learned from existing implementations across a chain of
eight reports in the wider energy sector, both onshore and offshore,
from June 2019 to June 2022.

OEDA Report 2 – Technical Feasibility demonstrated that the
OEDA requirements can be met with a high confidence similar
to the UK Government definition of Technology Readiness Level
6 (TRL6) to deliver on the OEDS Data Catalogue and Data Fabric
recommendations.

Summary

1.0

In OEDA Report 3 – Pilot Architecture and Ontology - an
architecture for the pilot was proposed using Foundry native
features, a customised experience based on the rapid application
building capability utilising the Ontology using Carbon and an
externally hosted web application that utilises the Platform’s API.
It was demonstrated that with the exception of a single OEDA
Requirement that stipulated that OEDA should be based on open-
source software, all other requirements, including that of the data
practitioners, were met.

The intent of the pilot was also to assist industry stakeholders and
consortium members in identifying what they need from a data
sharing platform based on experiences of using one. This body
of work has demonstrated several agile approaches to structure
the catalogue using object types and therefore downstream
applications that support different workflows. This can promote
active discussion in this area by a demonstration of principles
rather than hypothetical presentations.

The importance of Report 3 – Pilot Architecture and Ontology – is
to demonstrate to industry how using an existing architecture
the requirements set out in Report 2 – Technical Feasibility can be
achieved and showcased.

OEDA - Pilot Architecture and Ontology Design | 5

The first report defined and derived technical requirements
for a OEDA Data Sharing Platform by evaluating existing
implementations, best practices and recommendations from the
wider energy sector and translated them into terms understood
within the data industry. The second report demonstrated that
an OEDA Data Sharing Platform is technically feasible using
an example open source-based architecture to perform the
evaluation. This is the third report and is based on the pilot to
determine to what extent the Data Sharing Platform requirements
could be met and by using it what features are likely to be required
from OEDA. The fourth report examines a potential business and
cost model for OEDA. The final report documents the OEDA project
and provides recommendations to establish next steps.

To help determine requirements for a sector wide data sharing
capability, the OEDA project will use Palantir Technologies’
Foundry1 platform along with InDHu2 as partners for a pilot. This
was primarily due the success of Foundry in the aviation sector
with the implementation in Skywise3. Airbus was able to create an
ecosystem aimed at accelerating and expanding the exploitation of
aviation data across multiple parties from customers, suppliers and
even competitors in the field of aircraft maintenance.

The foundation for their digital platform was Foundry from Palantir
Technologies and many of the key personnel who supported the
Airbus Digital Transformation are now part of the InDHu start-up.
In the best traditions of the NZTC in trialling new technologies for
the offshore energy sector, the OEDA project will evaluate Foundry
as a pilot for the OEDA Data Sharing Platform with the expertise of
InDHu in its deployment and configuration.

The purpose of this report series is therefore not to substantiate
retrospectively the pilot selection. The scope is to gather existing
implementations, recommendations and best practices from the
wider energy sector into a preliminary set of requirements to
evaluate the pilot and inform subsequent platform evaluations
from other providers. Experience from the pilot will help
determine and refine the proposed OEDA Requirements to support
subsequent phases that will eventually lead to a tender for a Data
Sharing Platform.

Offshore Energy Digital
Architecture (OEDA)

2.0

There are five reports in establishing a sector wide OEDA:

1 Palantir Technologies (2023) - Palantir Foundry
2 InDHu (2023) - Industrial Data Hub
3 Airbus (2023) - Skywise | Enhance | Services

OEDA
Data Sharing Landscape

1

OEDA
Technical Feasibility

2

OEDA
Pilot Architecture and Ontology Design

3

OEDA
Potential Business & Cost Model based on Pilot

4

OEDA
Review

5

https://www.palantir.com/platforms/foundry/
https://www.indhu.ai/
https://aircraft.airbus.com/en/services/enhance/skywise

6 | OEDA - Pilot Architecture and Ontology Design

The purpose of this report is to demonstrate to what extent the
pilot based on Palantir’s Foundry could meet the OEDA and data
practitioner requirements (included in Appendix A) established
in the Data Sharing Landscape report4 in delivering the Offshore
Energy Data Catalogue (OEDC) and Data Sharing Fabric (DSF).
The intent is to introduce the salient features from Foundry in the
context of an industry-wide Data Sharing Platform. This will be
achieved by introducing Foundry’s Ontology, a key differentiator to
other analytical platforms but also responsible for enabling a digital
transformation with Skywise and Airbus in the aerospace industry.

Scope

3.0

4 NZTC (2023) - OEDA Report 1 - Data Sharing Landscape
5 NZTC (2023) - OEDA Report 2 - Technical Feasibility

To demonstrate these concepts, an example architecture and
ontology design will be discussed and how it can enable the
offshore industry to better explore what it needs from OEDA
rather than what it currently wants. Consistent with the Phase 1
activities, notably the Technical Feasibility5 report, a detailed design
of the ecosystem based on Foundry is out of scope, instead the
focus is on illustrating the key concepts and how they may support
the aims of OEDA through the pilot.

OEDA - Pilot Architecture and Ontology Design | 7

In 2020, the business case for OEDA (included in Appendix VII of the
Net Zero Technology Transition Programme report) identified “the
complexity and the scale of the challenge to integrate the data
from multiple organisations, sectors, technologies, and solutions
is substantial. There is a significant risk that meeting the 2045 net
zero target will be impossible without investment in deploying key
digital technologies in support of this target. Transformation will
be excessively costly if these technologies are not deployed in a
co-ordinated, collaborative way to avoid a slower more expensive
transformation”6.

OEDA is fundamentally a data sharing platform that enables
awareness and access to relevant datasets, demonstrates “shared
analytics platforms that are as open as possible” and promotes
“increased use of data across the sector to support decision
making, increased use of automation, remote control technologies
and improved operational efficiency”.

6 The Oil & Gas Technology Centre (2020) - Net Zero Technology Transition Programme - Appendix VII Offshore Energy Digital Architecture Business Case.
7 Scottish Government. (2021) - Investing in net-zero technology - gov.scot

In August 2021, the Scottish Government awarded the Net Zero
Technology Centre (NZTC) a £16.5million investment programme7
into accelerating a range of energy transition projects to help
deliver Scotland’s net-zero economy. The Net Zero Technology
Transition Programme was expected to enable £403billion for the
economy and 21,000 jobs by 2050; it covers seven projects that
have matched funding from industry:

Many of the stakeholders for OEDA include participants in the
Offshore Energy Data Strategy (OEDS) Taskforce, which made
two key strategic recommendations with regards to a Data
Sharing Platform. OEDA is not an isolated initiative but forms part
of significant movement within the wider energy sector that has
produced multiple projects and at least eight related reports, both
onshore and offshore, over a three-year period between June 2019
to June 2022.

Background

4.0

Energy Hub
NZTTP Programme

Data for Net Zero
NZTTP Programme

OLTER
NZTTP Programme

NZTTP Programme

Advancing Remote
 Operations

NZTTP Programme

https://www.gov.scot/news/investing-in-net-zero-technology/

8 | OEDA - Pilot Architecture and Ontology Design

Data Catalogue and
Data Sharing Fabric

5.0

The technical OEDA Requirements are
centred on the Offshore Energy Data
Strategy8 recommendations for an
Offshore Energy Data Catalogue (OEDC)
and Data Sharing Fabric (DSF):

Data Catalogue (OEDC)

Data Sharing Fabric (DSF)

Data search API Reporting

Metadata store

Third party data catalogue(s)

Metadata aggregator

Metadata

Data catalogue

Data
users

Governance

Authentication

Stored data API Metadata

Data providers

Open data API Metadata

To better understand the context, an extensive literature review
was conducted to derive a set of requirements based on a
consolidated set of recommendations, best practices and lessons
learned from existing implementations across a chain of eight
reports in the energy sector, both onshore and offshore from June
2019 to June 2022. These were captured in OEDA Report 1 - Data
Sharing Landscape9 and presented in two tables.

The primary or OEDA Requirements are based on the wider
energy sector (and prefixed with “E”) and a second set of
requirements was also proposed reflecting the expectations of
data practitioners (prefixed with “D”) and are both presented in
Appendix A. As the offshore sector has yet to accept the proposed
OEDA Requirements, both sets of requirements will be used to
guide the evaluation of the pilot.

The figure above shows the general principle of how a data user
accesses a resource from the data provider. The user consults the
data catalogue, and if the requested resource is categorised as
open, then the Data Sharing Fabric facilitates direct access to that
resource at the data provider without the need to authenticate.
If the resource is categorised as shared, the user needs to
authenticate with the Data Sharing Fabric, which then requests
Authentication and checks the Authorization before facilitating
access to the resource without secondary authentication at the
data provider.

Figure 1: Offshore Energy Data
Catalogue (top) and Data
Sharing Fabric (bottom)

8 Energy Systems Catapult (2022) - Delivering a Digitalised Energy System
9 NZTC (2023) - OEDA Report 1 - Data Sharing Landscape
10 Energy Systems Catapult (2022) - Delivering a Digitalised Energy System

The classification of the user and the request is subject to the
Governance Framework, which defines the users that can connect,
their level of authorization and an authentication service that
delivers the required access. In practice, the Governance could
be seen as a series of individual or shared Access Policies, where
multiple policies may be applied to a user to provide granular
control. To meet the presumed open stance, a default policy could
be applied to permit permissive access to resources including (if
required) no controls or restrictions at all. The “rules” that define
the framework will be subject to wider industry collaboration on
how to implement the principles highlighted in the OEDS Report10.

The Fabric is intended to provide in effect Single Sign-On (SSO)
to multiple data providers with one set of credentials. The
workflow described is suitable where the data is directly hosted
on the provider and can be downloaded or copied by the user. If
the resource, however, describes an Application Programming
Interface (API) to access an external data source or a Machine
Learning (ML) model, the user may not have the capacity to make
a local copy but will likely want to authorise a device or a compute
cluster under their control, in particular to permit automated data
consumption. This is not captured in the original figure, nor is this
use case fully stated within the offshore sector; therefore, it has
been assumed that the OEDA Data Sharing Platform needs to
deliver the same intent for these types of cases.

https://es.catapult.org.uk/report/delivering-a-digitalised-energy-system/
https://es.catapult.org.uk/report/delivering-a-digitalised-energy-system/

OEDA - Pilot Architecture and Ontology Design | 9

Foundry Introduction

6.0

Palantir’s Foundry is an operations platform
that supports the combined effort of the
data, analytics and operations teams:

11 Palantir Technologies (2023) - Platform Overview
12 Palantir Technologies (2023) - Security

Data

Operations

Analytics

In this context these do not have to be dedicated teams but
categories - for example, the Data team could be from within the
Information Technology (IT) department, or from Manufacturing,
in effect anyone who has access to and manages the data of the
organisation. Similarly, the Operations team represents anyone
who has to use the data to make a decision affecting day-to-day
operation. Such as approving a purchase request, onboarding
a new employee or dealing with a customer complaint. The
Analytics team could be someone analysing Seismic data or
looking at employee performance and retention.

Six groups of services underpin the platform’s capability:

Figure 2: Foundry Overview11

The Data Integration services provide a multitude of connectivity
options that are scalable, integrate with Enterprise data systems
and support both batch and streaming pipelines with built-in health
checks. The Model Integration services integrate simulations,
forecasting, predictive and Machine Learning models. The Ontology
is the operational layer of the organisation as it maps the datasets
and models to their real-life counterparts, in effect creating their
Digital Twin. This is the fundamental component that allows
applications to be constructed quickly to enable operational
workflows and powers analytics without users having to worry
about the Single Source of Truth or whether comparisons and
calculations performed are meaningful.

Application Building powers a diverse range of users with custom
and easy to use interfaces that utilises the Ontology. The Analytics
services enable all users to understand the underlying data
through the Ontology from no-code and low-code solutions to
toolsets that empower data scientists. Finally, the Security layer
enables Foundry to handle financial data, Personally Identifiable
Information (PII), Protected Health Information (PHI) and a range
of Government sensitive data. There is extensive documentation
that demonstrates the platform supports the highest security
standards in meeting OEDA Requirement E1012.

Foundry enables an ecosystem of end-to-end Enterprise ready
and robust applications to be developed within a single platform
using a number of composable elements. This can therefore make
it difficult to determine what tool or service is most appropriate for
a particular use case. The subsequent sections define an example
architecture that utilises some of the features to meet the OEDA
Requirements.

Security

Application
Building

Model
Integration

Analytics

The
Ontology

Data
Integration

https://www.palantir.com/docs/foundry/platform-overview/overview/index.html
https://www.palantir.com/docs/foundry/security/overview/index.html
https://www.palantir.com/docs/foundry/data-integration/overview/index.html
https://www.palantir.com/docs/foundry/model-integration/overview/index.html
https://www.palantir.com/docs/foundry/ontology/overview/index.html
https://www.palantir.com/docs/foundry/app-building/overview/index.html
https://www.palantir.com/docs/foundry/analytics/overview/index.html
https://www.palantir.com/docs/foundry/security/overview/index.html

10 | OEDA - Pilot Architecture and Ontology Design

Data Provider Integration

7.0

The Offshore Energy Data Catalogue (OEDC) and Data Sharing
Fabric (DSF) are part of the same ecosystem with data providers
and therefore will be influenced by their technical limitations but
also metadata requirements, standards and processes which are
currently not agreed across the offshore industry.

13 NZTC (2023) - OEDA Report 1 - Data Sharing Landscape
14 Dublin Core (2023) - Dublin Core Metadata
15 Ofgem (2023) - Decision on updates to Data Best Practice Guidance and Digitalisation Strategy and Action Plan Guidance
16 Internet Engineering Task Force (1998) - RFC 2413 - Dublin Core Metadata for Resource Discovery

7.1 Metadata Standards

The wider energy sector has a number of overlapping
recommendations in terms of the required metadata but in the
absence of a consensus, it is recognised that the minimum
requirements cited13 are the Dublin Core14 standards. This is
supported by a recent decision in the onshore energy sector
where Ofgem’s Data Best Practice15 reinforces the need to support
the Dublin Core metadata standard. The most basic set was
incorporated by the Internet Engineering Task Force (IETF) Request
for Comments (RFC) 241316 standard as illustrated below:

Content

Title Subject

TypeDescription

Source Relation

Coverage

Intellectual Property

Rights Creator

Contributor

Publisher

Instantiation

Date Language

Identifier Format

Metadata

Metadata Groups

Dublin Core Metadata for Resource Discovery

RFC2413 - September 1998

It is proposed for the evaluation of the pilot to use these 15
elements, which have been broadly grouped within the RFC as
relating to the Content, Intellectual Property and Instantiation (in
effect when materialised at a given time and place). There is no
technical limitation within Foundry on the number of metadata
elements or the complexity in their hierarchical structures,
therefore the RFC is a good basis for the pilot evaluation.

Figure 3: Dublin Core Metadata in Metadata Groups

https://www.dublincore.org/
https://www.ofgem.gov.uk/publications/decision-updates-data-best-practice-guidance-and-digitalisation-strategy-and-action-plan-guidance
https://www.ietf.org/rfc/rfc2413.txt

OEDA - Pilot Architecture and Ontology Design | 11

Technical solutions tend to focus on the end state
as being static, in this instance a data catalogue.
However, it is important to recognise that there are
multiple workflows associated with the lifecycle of a
data catalogue entry. There is the process of creation,
modification and removal but as these actions can
be destructive, there is also a need to define and
manage who can perform these actions and what if any
authorisations are required. Removing a widely used
data asset without notice is likely to have a significant
detrimental impact and undermine the objective of
greater industry collaboration. This highlights another
need in how the community is notified of such changes,
in particular if they have consumed the data previously or
are doing so actively.

7.0 Data Provider Integration

7.2 Processes

Much of the focus from the Data Sharing Landscape
has been on the infrastructure elements of a catalogue
and DSF, without defining how these would be used in
practice. The pilot provides an opportunity to explore
these concepts and in the absence of any agreed
practices, the intention is to show how these workflows
could be codified within Foundry.

12 | OEDA - Pilot Architecture and Ontology Design

The two key technical interface requirements are:

7.0 Data Provider Integration

7.3 Technical Limitations

The novel component in the OEDS defined data catalogue is the
inclusion of a metadata aggregator. The technical burden in the
integration between the two systems can have potentially two
extremes; the first is that there are no changes made to the data
providers. In this instance the aggregator needs to support a
variety of interfaces to extract the metadata from a data provider
provisioned API, to accessing a portal securely and ingesting an
XML file, to web scraping using a bot and performing complex post
processing akin to web crawlers used by search engines.

The other extreme (adopted by the Ice Breaker One17 and
advocated by the EDTF approach) is to put the burden on the
data provider, in either constructing an API to a set standard
or deploying a metadata depositor - an automated means of
translating the data provider’s dataset format and metadata into
a format compatible with the catalogue at the data provider’s
technical expense.

As there is currently no agreed data provider technical interface,
the proposed architecture will accommodate most use cases for
the purposes of evaluating the pilot.

17 Icebreaker One (2023)

Automated metadata
transfer

Authentication and
authorization between the
fabric and the data provider

https://icebreakerone.org/

OEDA - Pilot Architecture and Ontology Design | 13

7.0 Data Provider Integration

7.4 Pilot Architecture

The following architecture demonstrates that it is likely all but one
of the 10 OEDA Requirements can be met using just native Foundry
features. The exception is Requirement E318 which requires the
use of open-source software, whereas Foundry is a commercial
product using proprietary integrations of open source components.
To mitigate concerns regarding access to data and workflows,
Palantir has taken steps to make Foundry accessible from other
platforms and improve interoperability19.

The requirement also stipulates support of the Presumed Open
principles, one of which requires data that is considered open
to be accessible without authentication. It is currently not
possible to access any Foundry element without authenticating
given its security posture. The proposed architecture uses the
interoperability features to provide an alternative whilst meeting all
of the other OEDA Requirements:

18 OEDA shall be based on open source software and open standards. It should facilitate the Presumed Open principle.
19 Palantir Technologies (2023) - Interoperability

Figure 4: Potential OEDA Architecture based on Foundry

OEDA Foundry Instance
External
Hosting

External
Users

Open Data

Web App Users

Shared Data

Pr
iv

at
e

D
at

a

G
ro

up
 P

er
m

is
si

on
s

Data Provider #1

Pr
iv

at
e

D
at

a

G
ro

up
 P

er
m

is
si

on
s

Data Provider #2

Gateway API

Object Viewer

Carbon App

There are potentially two general approaches to adopting
Foundry; the first is to host the entire ecosystem (like the Skywise
implementation) within the platform - this not only means the users
and data providers, but also their processes and workflows. Many
of the OEDA and data practitioner requirements can be met with
just native Foundry features. The second approach recognises
that not all data providers may wish to host their data within the
platform or may wish to maintain a presence outside of it. In both
cases, there will be a group of users who will wish to access the
data catalogue and the open data without authentication.

https://www.palantir.com/docs/foundry/platform-overview/interoperability/index.html

14 | OEDA - Pilot Architecture and Ontology Design

7.0 Data Provider Integration

7.5 External Catalogue Access

The figure above shows access to the catalogue without
user authentication can be met with an intermediary external
application, which authenticates with the Foundry Gateway
API using OAuth220 (and also demonstrates that it satisfies
Requirement D221). The application could be web-based (as per
the figure) or any other publicly accessible application such as
a Microsoft Power BI dashboard similar to the approach adopted
by the Office of Rail and Road in presenting Passenger Rail
Performance22. The Foundry API provides access to all of the data
on the platform through a unique Resource IDentifier (RID) as well
as programmatic access to the ontology and its objects, links and
actions. These terms are explained in greater detail in subsequent
sections but in effect access to all the elements needed to host
an external data catalogue that does not require authentication to
access.

OEDA Foundry
Instance

External
Hosting

External
Data Users

Ontology Gateway API Web App Users

Figure 5: External User Access

20 Palantir Technologies (2023) - Writing OAuth2 Clients for Foundry
21 OEDA shall support the use of long held security tokens including but not limited to client and server-side certificates - mutual Transport
 Layer Security (mTLS) with Hardware Security Modules (HSM) and / or rotated authentication tokens (i.e., OAuth 2.0 / OIDC).
22 Office of Rail and Road (2023) - Passenger Rail Performance
23 Palantir Technologies (2023) - Ontology - Object Viewer
24 Palantir Technologies (2023) - Application Building- Carbon

7.6 External Catalogue Access

For users within the Foundry ecosystem, either in the OEDA
instance or another Foundry instance, there are two proposed
solutions to interface with the data catalogue. The first is the
Object Viewer23 accessed through various applications but
typically Object Explorer, which is a native Foundry application
that allows easy exploration of the catalogue. Whilst it is possible
to manage the life cycle of each entry and associated processes
with just the viewer, it requires some knowledge of the ontology
and doesn’t fully replicate business processes. To support users
with minimal training with workflows that match the needs of
organisations, Foundry encourages application building based on
the ontology through its Carbon24 service:

The key advantage of a Carbon application is that it can abstract
away all of the other Foundry features and can be used to combine
multiple applications built on the ontology into a single bespoke
view. In practice this means most of Foundry could be hidden away
from particular users providing an uncluttered and dedicated
experience in accessing and / or managing the catalogue.

OEDA Foundry
Instance

Ontology Gateway API Users

Carbon App

Figure 6: Internal Catalogue Access

https://www.palantir.com/docs/foundry/platform-security-third-party/writing-oauth2-clients/index.html
https://dataportal.orr.gov.uk/statistics/performance/passenger-rail-performance/
https://www.palantir.com/docs/foundry/object-views/overview/index.html
https://www.palantir.com/docs/foundry/carbon/overview/index.html

OEDA - Pilot Architecture and Ontology Design | 15

7.0 Data Provider Integration

7.7 Data Integration

Subsequent sections define what the ontology is, how it is
used and present examples / mock-ups of the object viewer,
Carbon application and the external web application. They are all
predicated on the underlying data supporting the ontology, which
can be integrated from data providers in broadly three different
ways:

25 Palantir Technologies (2023) - Data Connections
26 Palantir Technologies (2023) - Data Integration - HyperAuto: Software-Defined Data Integration
27 Palantir Technologies (2023) - Data Integration - Streaming Sources
28 Palantir Technologies (2023) - Data Integration - REST APIs
29 OEDA shall support the OEDS defined Data Catalogue.
30 Palantir Technologies (2023) - YouTube - Operational AI for Critical Institutions | Palantir CEO Alex Karp at CERAWeek (at 08:00)

The Data Catalogue is however intended to capture metadata
about the data; there is no requirement to host the data itself,
although Foundry does provide the features to both understand
and utilise the data in decision making. All three methods
permit the copying of data as well as copying the metadata
using automated means and therefore also meet the metadata
aggregator requirement of the data catalogue (E129). Automated
ingestion of metadata will require some co-ordination with the data
providers depending on the format and type of data.

The most effective tool for data integration within Foundry is
HyperAuto - a public example is the Palantir deployment as
described by BP’s former Chief Executive Bob Dudley in how
two Palantir Forward Deployed Engineers integrated many of
BP’s disparate systems and provided greater visibility over just
a weekend30. HyperAuto is designed not only to copy the data
but also apply typical transformations (in effect cleaning and
organising it) as well as creating an ontology automatically based
on the context of the data. The second most effective method
of data integration is the use of an agent, which is controlled by
Foundry and provides a secure managed and highly available
mechanism of data extraction.Using a messaging client for streaming

data27 or REST APIs for batch28 data.

Using direct connections to a data
store (e.g. database, file sharing
protocol or even Microsoft’s
Sharepoint).

Automated data integration using
agents25 running within the provider’s
network or automated ingestion,
pipeline creation and even ontology
creation with HyperAuto26.

https://www.palantir.com/docs/foundry/data-connection/overview/index.html
https://www.palantir.com/docs/foundry/hyperauto/overview/index.html
https://www.palantir.com/docs/foundry/streaming-sources/streaming/index.html
https://www.palantir.com/docs/foundry/data-integration/rest-apis/index.html
https://www.youtube.com/watch?v=hkeohWt6rGA

16 | OEDA - Pilot Architecture and Ontology Design

7.0 Data Provider Integration

7.8 Data Preparation

All three integration approaches would materialise the
assets (whether it is the data or the metadata) in a
private space for that organisation (i.e. data provider).

Figure 7: Data Provider Onboarding

OEDA Foundry Instance

Open Data

Shared Data

Pr
iv

at
e

D
at

a

G
ro

up
 P

er
m

is
si

on
s

Data Provider #1

Pr
iv

at
e

D
at

a

S
ep

ar
at

e
In

st
an

ce

Data Provider #2 Ontology

The figure shows two data providers with a presence on the OEDA
instance of Foundry, the first is an organisation onboarded directly
onto the platform with a dedicated and private segment to operate
in but ultimately managed by OEDA. The second represents
a separate Foundry instance using its cross-organisation
collaboration31 feature.

Typically, most data providers will clean their data to remove
Personally Identifiable Data (PID), commercially sensitive data
or enrich the dataset to provide the proper context before
transferring them on to a Data Sharing Platform. These are often
manual operations that require handling potentially multiple
intermediary files and ensuring the labels and locations are
appropriate to prevent confusion in the future. The same intent
can, however, be delivered within Foundry with fewer operations
and better traceability.

Consider a scenario where an industry or a group of companies
collaborate to reduce fraud involving employees or third-party
contractors. An analysis conducted without any PID will make
it difficult to determine which people to contact to try and
understand any anomalies that have been detected. The typical
approach is to split the data (with and without PID) with a look-up
table that maps an individual to a non-descriptive but unique hash.
The outcome of the analysis provides the hashes of interest, in
which the data owners can use the lookup table to map to a real

person. This has proven to be difficult to execute as it requires the
handling of multiple datasets and organising permissions such that
the right people have access to the right file.

Within Foundry, three native features are offered along with a built-
in organisation workflow that ensures controlled access. Sensitive
data can be encrypted or hashed directly on a single column or
a whole dataset such that only restricted personnel can view
and manipulate the data using the Cipher32 tool. This is enforced
using the approvals33 workflow, which permits users of the data to
request access but also the checkpoint34 tool, which even if a user
has prior permission must still document why they are accessing
the dataset. With Cipher, the data provider can accelerate their
workflows for data release by ensuring their equivalent of a data
officer can approve the release of a dataset with the security
controls in place. There is also a built-in Sensitive Data Scanner35
tool to assist data providers catch unexpected sensitive data.

In the fraud detection example, the data providers can encrypt
the relevant columns with Cipher and make it available in a shared
space. This dataset can be combined, manipulated and analysed
to produce an end result, where the data provider is the only
organisation that is able to decode the sensitive data contained
in the output. This, therefore, removes the need to produce and
manage multiple intermediary files.

31 Palantir Technologies (2023) - Security - Cross-Organisation Collaboration
32 Palantir Technologies (2023) - Security - Cipher
33 Palantir Technologies (2023) - Security - Approvals
34 Palantir Technologies (2023) - Security - Checkpoints
35 Palantir Technologies (2023) - Security - Sensitive Data Scanner

https://www.palantir.com/docs/foundry/security/cross-organization-collaboration/index.html
https://www.palantir.com/docs/foundry/cipher/overview/index.html
https://www.palantir.com/docs/foundry/approvals/overview/index.html
https://www.palantir.com/docs/foundry/checkpoints/overview/index.html
https://www.palantir.com/docs/foundry/sensitive-data-scanner/overview/index.html

OEDA - Pilot Architecture and Ontology Design | 17

7.0 Data Provider Integration

7.9 Data Governance

The pilot architecture shows the Landing
Zone36 of the data as a Private Space,
which depending on the Governance
framework from the Data Sharing Fabric
would set the default access policy.
Foundry provides several features to
enact a Data Governance framework from
basic controls such as users and groups37,
collaborative features such organizations
and Namespaces38 and advanced features
such as Markings39.

Typical permission-based control could be inherited through the
Single Sign On (SSO) capability in Foundry from host organisations.
These can be applied to different locations within the Foundry
from where the data is stored to object types and objects in the
ontology. It is proposed that each data provider is set up as an
organization for the pilot to enable a dedicated Private Space
to prepare their data as described in the previous section. In
addition, to enable any pre-processing it is proposed that the
provider belongs to their own Namespace but also two additional
namespaces: open and shared. The Namespace structure permits
projects to be created where ultimately the provider’s data could
be hosted.

These controls permit the Governance framework from the Data
Sharing Fabric to be created and enforced. In maintaining a living
data catalogue, there will be occasions where sensitive data
may arise that requires additional controls or specific cross-
collaboration controls. The features described thus far are location
based, and depending on where the data is, the level of access is
granted. Foundry also permits controls that can cross multiple
boundaries such as Projects, Namespaces and Organizations in
effect the constraints travel with the data through the Markings
feature.

A potential use case could be exploring the use of a new and
novel data source, which is then limited to 10 specific users from
say 10 companies. Location-based controls mean that all derived
data must be hosted in the same location and accessible by all
10 users. This would discourage using the data in other company
confidential use cases to determine potential benefits.

Markings travel with the data, such that any derived data inherits
the same constraints. So, if the derived data is stored in a company
specific Namespace, the user can meet both sets of constraints.
The union of permissions ensures that the organisational controls
keep all non-company users out and the markings controls keeps
all unauthorised users out. A combination of these features
satisfies the governance and the authorisation components of the
Data Sharing Fabric in Requirement E240.

36 Stax.io (Feb 2023) - What is a Cloud Landing Zone?
37 Palantir Technologies (2023) - Security - Users and Groups
38 Palantir Technologies (2023) - Security - Organizations and Namespaces
39 Palantir Technologies (2023) - Security - Markings
40 OEDA shall support the OEDS defined Data Sharing Fabric.

The union of permissions ensures that the organisational
controls keep all non-company users out and the markings
controls keeps all unauthorised users out.

https://www.stax.io/blogs/what-is-a-cloud-landing-zone
https://www.palantir.com/docs/foundry/security/users-and-groups/index.html
https://www.palantir.com/docs/foundry/security/orgs-and-namespaces/index.html
https://www.palantir.com/docs/foundry/security/markings/index.html

18 | OEDA - Pilot Architecture and Ontology Design

7.0 Data Provider Integration

7.10 Data Pipelines and Data Lineage

At the highest level, Foundry enables multiple stakeholders or
groups of users to work in a dedicated space using organisations,
which could also include access through Single Sign-On (SSO).
To migrate data from the private space to a location where either
open or shared data resides, Foundry best practice is to use a
data pipeline. These are created with either the Pipeline Builder
application (no-code) or Code Repositories which is designed
more for data engineers. In general, pipelines take single or multiple
original datasets, transform, filter and aggregate them into an
output dataset, however even if no changes are made the use of
pipelines is recommended.

Pipelines are the foundation of creating automation, permit data
health checks and scheduled updates; but their most significant
benefit is that it permits Foundry to create a data lineage graph
across organisational and usage boundaries (figure 8).

Each node in the figure represents the name of the dataset usually
prefixed with the relative folder name where the lineage graph is
stored; the edges (or links) typically represent a data pipeline that
links the datasets. The transformations between nodes are not
visible in the data lineage graph although a variety of metrics and
features can be displayed with the node colour41 using the key. If
Foundry best practice is followed, then a group of transformations
or a project should utilise the Repository42 feature (or folder name
as a back-up) and much like Version Control Systems (VCS) used
in software development, the user can work in an agile manner but
have the ability to revert changes.

By viewing the data lineage as a function of repository name, it
provides valuable insights into how the data is being used. The
figure illustrates that the output from the data provider is a
dataset in a shared location and is then used in three subsequent
repositories across two organisations. The Start-up appears
to have two projects that utilise the shared data and appear to
merge a company specific dataset to enrich the output. Although
the access to these datasets is restricted to their respective
organisations, these parameters (such as the dataset name) are
visible to all users of the platform.

The data provider can quickly determine how their data is being
used but it also allows collaborators to determine if they are likely
making the same transformations in isolation and therefore, it
may be better to do so once and then share the resultant output.
There are other metrics visible such as row count, number of files,
build time, frequency and duration - all of which can be used to
determine the level of engagement with the data. In contrast, the
North Sea Transition Authority (NSTA) receives tens of millions
of API calls every year but without this level of visibility on who is
using the data, how much, how often and for what purpose. The
features discussed support the OEDA Requirements E643, E844 and
E945 as well as the data practitioner requirement D146.

raw/solar_energy

raw/unit_conversion

clean/solar_energy zeus/solar_energy_pred zeus/mobile_app

nero/solar_energy_pred

nero/inquiries

nero/house_installs

raw/solar_energy_pred transformed/by_region

transformed/combined

shared/solar_energy_pred

Data_provider_solar (5)

Start_mobile_app (2)

Gove_agency_planning (2)

Startup_marketing (3)

Colour by:

Respository Name

Figure 8: Data Lineage graph illustration

41 Palantir Technologies (2023) - Data Lineage - Node Coloring
42 Palantir Technologies (2023) - Data Integration - Branching
43 OEDA shall support metrics regarding the data.
44 OEDA shall support a mechanism to enable users to provide direct feedback to Data Providers.
45 OEDA shall display lineage or provide the means to define a lineage between datasets. OEDA shall support datasets to be related using attributes.
46 OEDA shall support the use of internal and external repositories for dataset documentation, context, data samples, API definitions and other assets.

https://www.palantir.com/docs/foundry/data-lineage/node-coloring/index.html
https://www.palantir.com/docs/foundry/data-integration/branching/index.html

OEDA - Pilot Architecture and Ontology Design | 19

Foundry Ontology

8.0

The ontology is the operational layer of the
platform and is intended to allow users to
create business representations of their
data. It uses the concept of an object
type to describe a class or type of object
that maps to its real-life counterpart. For
example, an object type for a car, will
consist of properties that describe the
number of wheels, the colour, its valuation
and other attributes deemed relevant
in the business context. An object is
therefore a single or particular instance of
an object type.

Each object type is mapped from a single or multiple datasets
(referred to as the Backing Dataset), where for a tabular source,
each column would map to a property of the object type and each
row represents a single instance or object. Relationships between
objects, for example where a car is serviced (modelled as a Garage
Object Type) are referred to as object links.

Foundry encourages adding a semantic layer to the data through
the use of object types to exploit the platform’s automated
exploration and visualisation tools. For example, if one of the
properties of the car object type is a parking location and is
declared as a geospatial property, then when viewing the object,
a map will be automatically displayed. If two car objects are
compared, instead of providing a numerical difference for the
location property, it will calculate a distance because the platform
is aware of the semantic nature of the property.

A fundamental difference between a dataset and its ontology
representation is under operational contexts most businesses
want controlled changes during the lifecycle of an object; in
practice a minimum of controlling and recording the who, recording
the when, the where and the how. One method to change the
ownership property of a car is to manually edit the backing dataset
but then it is open to errors, it doesn’t follow the business process
and potential for multiple users attempting to perform the same
operation.

The ontology allows users to define what properties can be
changed and how through actions types. These can be combined
with the application building layer to create user friendly forms as
part of work flows that mimic business processes. For example, on
a car it is expected to update the mileage property but although
unlikely and rare, it is also possible that the unique serial number
(or VIN) could also require a change. The former could be enabled
for most users, whereas the latter could be restricted to a subset
of users or require a workflow that includes Checkpointing to
ensure the correct evidence is logged prior to making the change.

20 | OEDA - Pilot Architecture and Ontology Design

8.0 Foundry Ontology

8.1 Object Types

The word ontology is defined as a set of concepts in a defined
area that shows their properties and the relationships between
them. It is used as a way to define a Digital Twin, an abstraction
that captures the salient properties and their relationships or
sometimes referred to as providing the Semantic layer. There are
other definitions within the sector such as from the OSDU Forum47
and the Open Energy Platform48.

The approach in Foundry reflects the convergence of three
computing trends over the past 50 years. Since the 1970s,
database administrators have attempted to construct a data model
that represents how a business operates through the use of tables
and their relationships between them, similar to constructing the
backing dataset for an object type. The second trend also started
in the 1970s is called Object Oriented Programming (OOP) in
software development - it was recognised that existing data types
such as integers, floats and strings did not accurately model real-
life objects and their properties.

The intent of OOP was to create a programming representation
of real-life objects through classes (referred to as object types in
Foundry), where a single instance of a class is also referred to as
an object. The third trend in response to increased cybersecurity
concerns was the popularity of type safety, in effect when a
variable in a program is defined as an integer but receives a float
(a decimal number) the program can be made aware with an
appropriate response. A prominent example is the open-source
language TypeScript49, which took one of the most popular
languages in the world - JavaScript - and added support for type
definitions.

The illustration shows how a programming language or
spreadsheet could be used to model a business scenario. The
columns show a single object representation, an example of
comparing two objects, examining multiple objects and a brief
comment on the semantic representation. The first row shows
a number as a single object and most computing languages will
permit two numbers to be compared with subtraction. In the
field of data science and data analytics, there are tools that will
automatically generate summary statistics and plots - referred to
sometimes as Automatic Exploratory Data Analysis (EDA) or data
profiling depending on context (based on recognising the object to

be a number). In this example, if the object is attempting to reflect
a printed ticket which has a queue position, then many of the
operations performed and plots produced have no real meaning
such as the sum function for a collection of queue positions.

It is important to note that these automated tools have no
awareness that the number actually reflects a queue position.
Traditionally, to prevent numerical operations from occurring on
non-numerical entities an appropriate data type is set, typically
in this scenario a string. The functions to compare strings are
different to that of numbers and there are limited statistical
properties or plots to produce. Although this approach mitigates
accidental summation of a queue position, it still does not reflect
the queue position behaviours, for example sorting the strings in
alphabetical order will put the Ticket “10” before the Ticket “2” and
still therefore doesn’t reflect the real-life ticket in this business
context.

The third row reflects what is meant by a semantic type, in that
through some customisation or the use of OOP we create the type
Rank. This provides certain methods and functions that will sort
the data based on a predefined map (useful when ordering is non-
alphabetically e.g. a status such as Platinum, Gold and Silver) and
prevents some operations (such as addition) but permits others.
Although this is a closer representation of the ticket, it only has a
single property - the queue position. In practice our real-life ticket
may have a date and time printed, a ticket station number and
when the number is called a backend system could log both the
start and end time.

The final row therefore reflects an object type, which consists
of the queue position number but also a range of other related
properties. When comparing two objects of the ticket type, it is
possible to get meaningful comparisons such as what was the
difference in duration in minutes. This extends to multiple objects,
where a histogram could display the duration distribution, a
timeline constructed using the start and end datetime fields and
a heatmap of locations to show which station had the greatest
number of people. The representation also prevents inappropriate
functions from being applied, for example the mean of the duration
will be calculated but not the mean of the queue position.

47 The Open Group (2023) – OSDU Forum
48 The Open Energy Family – The Open Energy Platform
49 Microsoft (2023) - TypeScript: JavaScript with Syntax for Types

https://osduforum.org/
https://openenergy-platform.org/
https://www.typescriptlang.org/

OEDA - Pilot Architecture and Ontology Design | 21

Object types are created using the Ontology Manager50 and maps
fields from a backing dataset, their semantic representation and
the links to other object types. In traditional database design,
considerable effort is expended on the data model prior to
implementation due to constraints in performing in what would
be considered routine operations such as renaming, adding or
deleting a column. Therefore, during the lifetime of the database
there is significant resistance to any schema changes.

The following figure illustrates what these terms mean in practice:

Sum Mean Count

Sum Mean Count

Sum Mean Count

Number

Data
Type

Semantic
Type

Object
Type • Start Time

• Time at Operator
• End Time
• Operator
• Location

Sum Mean Count

16 16 - 12

16 - 12

MATCH

SORT

START DURATION

LOCATION SORT

END OPERATOR

SUBSTRING

LENGTH
16 STR

16 RANK

16 TICKET

The number represents a queue position on
a ticket in the customer services area of a
store. Operations such subtraction and
aggregation functions such as Mean have
no real meaning

Doesn’t convey the ability to sort or
relative position.

Doesn’t convey associated metadata
such when ticket was issued, when
ticket holder was seen or when closed.

Map properties of the object to
appropriate comparison methods,
aggregation metrics and visualisations.

Single Object Comparison Multiple Objects Semantic Representation

Figure 9: Evolution of Semantic Representation

In contrast, it is recognised within Foundry that users may not be
fully accustomed to the concept of an ontology and it is difficult
to determine if the choice of object types has the right set of
emergent properties without having trialled the design. Foundry,
therefore, supports multiple object types to be created from the
same dataset and the object view for a given object type is also
fully versioned controlled supporting a more agile approach to
determine the most effective structure.

50 Palantir Technologies (2023) - Ontology - Ontology Manager

8.0 Foundry Ontology

8.1 Object Types

https://www.palantir.com/docs/foundry/ontology-manager/overview/index.html

22 | OEDA - Pilot Architecture and Ontology Design

8.0 Foundry Ontology

8.2 Ontology Design

There are two key challenges in designing the ontology for the
OEDA Data Sharing Platform; the first is an understanding of the
metadata structure applicable for the datasets expected across
the entire offshore sector. The second is an understanding of the
operational workflows expected by data users and data providers
in maintaining the catalogue, the automated metadata aggregation
and the Data Sharing Fabric. As stated previously, in the absence
of a consensus on the minimum metadata, the Dublin Core set
from 1998 will be used as shown below. It should be noted that the
OEDA Data Sharing Landscape report identified that many of the
recommendations from the wider energy sector may not reflect
the types of data assets expected within the offshore industry.
Similarly, the workflows discussed have focussed on the process
to ultimately determine if a dataset can be released and its status
in terms of open or shared and not the examples stated above.

Data Catalogue Entry

Title Subject

TypeDescription

Source Relation

RightsCreator

Contributor

Publisher:PubID

Data Provider

PubID

Tags

Publisher

Applicability ID

Property

Object types
Example 1: Mapping Properties to Ontology Object Types

Object links

Coverage

Date Language

Identifier

Format

Address Contact

Figure 10: Dublin Core Metadata in Metadata Groups

Figure 11: Data Catalogue and
Data Provider Object Types

The most basic approach is to treat
the catalogue as a tabular dataset
and in effect have a single object type
with all the metadata elements above
as properties. Within the metadata
listed, it is also possible to identify
other individual entities, which may
be worth modelling as their own
object types; one example is that
of publisher or in our case the data
provider:

The pilot offers the opportunity to explore and develop the thinking
around these other aspects of owning and maintaining the OEDS
defined data catalogue and Data Sharing Fabric. The approach
to utilising the platform cannot therefore follow a typical Foundry
implementation approach as the inputs have not been sufficiently
defined. The intention is therefore to illustrate the capabilities
of the pilot in this field and showcase a starting example with
consortium members and industry stakeholders in order to seek
feedback and refine the design.

Content

Title Subject

TypeDescription

Source Relation

Coverage

Intellectual Property

Rights Creator

Contributor

Publisher

Instantiation

Date Language

Identifier Format

Metadata

Metadata Groups

Dublin Core Metadata for Resource Discovery

RFC2413 - September 1998

OEDA - Pilot Architecture and Ontology Design | 23

Data Catalogue Entry

Title Subject

TypeDescription

Source Relation

RightsFormat

Language

Publisher:PubID

Data Provider

PubID:Publisher

Applicability

Publisher Tags

Example 2: Mapping Properties to Ontology Object Types

Coverage

Date Contributor:PersonID

Identifier

Address Contact

Person

PersonID:Contributor

Organisation

PersionID:Creator

Tags

Name

Email

Username

Creator:PersonID

Figure 12: Extending Ontology Design with Person Data Type

The figure shows two object types,
one is a catalogue entry and the
second is a data provider, which are
linked together using a common
identity. This permits additional
properties to be captured for the
Publisher in such a way to support
operational workflows. For example,
we can potentially browse and filter
a set of providers based on tags
providing an alternative view into
the data catalogue but also from an
operational perspective maintain an
independent view on contact details
and associated personnel. These
fields would clearly be inappropriate
to host in a public data catalogue
and therefore creating a separate
object type is both semantically and
operationally useful.

8.0 Foundry Ontology

The same approach can be used for the contributor and creator
fields as they are in general natural persons or can be expanded to
be both natural persons and organisations. The figure above shows
a similar approach, and again facilitates the exploration of the
catalogue through an author or researcher. It is recognised that
for most instances, the creators may not be on the platform but the
creation of a separate object type with a link enables the user to
utilise the object links to find related datasets in this instance by
the same creator or contributor.

subject_keywords.csv

Keyword Level 1

Level 3Level 2

languages_rfc5646.csv

EnglishTag

Example Backing Datasets

Native ISO-3
Backs

Language

Backing_Datasets

Column

Backs
Subject

Property

OEDA Requirement E451 and related Requirement D652 recognise
the need to have a structured approach to metadata for example
using a taxonomy and using potentially a hierarchical layout.
This can be implemented through the choice of backing dataset.
For example, suppose the wider community agrees on a set of
keywords to use, these can be imported into the platform and used
to back a property in the object type definition:

Figure 13: Effective use of Backing Dataset for a Object Type Property

51 OEDA shall support a customisable set of attributes to act as metadata and have the means to define differing levels of priorities and controls.
52 OEDA shall have the means to support a variety of metadata formats (beyond the current attribute-oriented needs).

8.2 Ontology Design

24 | OEDA - Pilot Architecture and Ontology Design

8.0 Foundry Ontology

8.2 Ontology Design

This feature can enforce the Taxonomy through a predefined set
of keywords that can be used and control the number of tags that
can be applied. For example, a workflow that triages data release
requests, may have the status new, assigned, hold and release;
these could be defined via a backing dataset and manifests itself
to the user as a dropdown menu with four options. Coupled with
the Foundry Rules53 feature, automated alerts and notifications
could be generated or workflow alerts triggered.

The second example mitigates an observation from the Energy
Data Centre and other data catalogues where the language field is
free-form text resulting in many but related terms such as: English,
english, eng, eng/GB and en-GB. Using an imported dataset based
on an international standard as the backing dataset for an object
type field restricts the potential inputs to a standard set.

Once the objects are being used the Ontology Manager also
contains a usage screen that provides visibility on how and where
they are being used (figure 14).

Figure 14: Object Usage Monitoring

In addition to the data lineage graph capability,
this provides additional context on object type
popularity and the applications that have been built
upon them supporting Requirements E654 and E855.
Co-ordinating object type creation by duplicating
existing types and modifying them allows for an
agile development process to determine the most
effective use of the platform to meet business needs.

53 Palantir Technologies (2023) - Ontology - Foundry Rules
54 OEDA shall support metrics regarding the data.
55 OEDA shall support a mechanism to enable users to provide direct feedback to Data Providers.

https://www.palantir.com/docs/foundry/foundry-rules/overview/index.html

OEDA - Pilot Architecture and Ontology Design | 25

8.0 Foundry Ontology

8.3 Object View

The Ontology Manager is responsible for mapping fields, some of their behaviours and their semantic
representation for an object type. The Object Explorer56 tool is then used to view the actual objects:

Figure 15: Filtering Data with Object Explorer

The tool provides a no-code interface to supporting explorations of the ontology through individual objects
and their links. In the example above, the user is presented a profile of the Aircraft Status field to guide the
exploration. Individual objects can be viewed by selecting the results tab and selecting a single instance:

Figure 16: Example Object View

56 Palantir Technologies (2023) - Ontology - Object Explorer

https://www.palantir.com/docs/foundry/object-explorer/overview/index.html

26 | OEDA - Pilot Architecture and Ontology Design

8.0 Foundry Ontology

8.3 Object View

Note that the object view contains multiple
tabs, has details presented as tables,
comparisons with the rest of the population,
as well as visualisations. There is a no-code
approach to editing and customising these
features to support the desired workflow
and shows the native features of Foundry
can offer significant visualisation and
analysis capability based on the ontology.
The language used to customise the object
view is similar to desktop and web-based
application development such as layouts,
tabs and widgets. As each property has
a semantic meaning, the customisation
options presented are pre-filtered to ensure
they make sense.

The following is a proposed mock-up for the
OEDA Data Catalogue entry based on the
available customization options57:

The mock-up object view shows an example Data Catalogue Entry
Object Type, with three tabs; the first provides an overview of the
entry in the catalogue. The second tab can include maps and/or
timelines based on the coverage metadata - the intention is to
identify other entries that are either within a set physical range
or a time period. The third tab is intended to utilise the object link
to the publisher or data provider to provide an alternative view to
related catalogue entries.

The default tab shows three sets of buttons, which is (as all object
properties are) backed by a dataset. The green button is based
on the identifier element, which is likely to be a URL to the dataset
hosted by the data provider and satisfies Requirement E558. Where
appropriate, a link to the same dataset within Foundry could be
populated for the black button and satisfy the Requirement D559
for data exploration. The blue button demonstrates that other links
could be provided to satisfy other requirements such as direct
access to the external data provider host (e.g. web page) or an
internal data provider object.

Four large property cards reflect various metadata elements and
two smaller cards show attributes specific to this type of entry
- the number of files Property for example is not appropriate for
a REST API endpoint. The subject or keywords are presented as a
filter, which controls the list of related objects in the bottom right
of the figure. This contains multiple object types and not just
restricted to the one data catalogue entry type. The description
field is presented as a long text widget, which can support rich
formatting using the Markdown language satisfying Requirement
D460.

The mock-up illustrates a potential improvement in the ontology
design that reflects the discussion around metadata standards
captured in the Data Sharing Landscape report. Given the variety
of data expected in the offshore sector captured within the OEDS
report, discussions around minimum metadata requirements are
reduced to the lowest common denominator, thus reducing the
available context (and potential utility) for all users. The ontology
offers a mechanism to capture the relevant metadata for all parties
in a manner that provides the required contextual metadata but
still meets the minimum requirements.

Figure 17: Proposed Object
View Mock-up for OEDA

57 Palantir Technologies (2023) - Object View - Configuration
58 OEDA shall support external URL redirects, HTTP based APIs, the means to redirect to static files and other protocols to support streaming applications.
59 OEDA shall support the exploration of data with either internal or external platforms.
60 OEDA shall support rich formatting of content.

https://www.palantir.com/docs/foundry/object-views/config-overview/index.html

OEDA - Pilot Architecture and Ontology Design | 27

8.0 Foundry Ontology

8.3 Object View

The current ontology design in effect takes a tabular view of the
output and splits the object types by column. To enable context
specific object properties, the catalogue could be split by row
based on the Type element. The most practical implementation
within Foundry is to automatically split the backing dataset into
multiple tables with common columns to reflect the common
object properties and additional columns that are relevant to that
that type of entry to enable custom object views:

Data Catalogue Entry

Title Subject

TypeDescription

Source Relation

Format

Language

Publisher:PubID

Datasets Specific Ontology Object Types

Coverage

Date Contributor:PersonID

Identifier

Creator:PersonID

Rights

Data Catalogue Entry

Format Lineage Size

No of files Sample files
Data Catalogue Entry

Title Subject

TypeDescription

Source Relation

Format

Language

Publisher:PubID

Coverage

Date Contributor:PersonID

Identifier

Creator:PersonID

Rights

Object types

Image Dataset

Format

Dimensions

Resolution

Augmentation

SizeNo of files
Data Catalogue Entry

Title Subject

TypeDescription

Source Relation

Format

Language

Publisher:PubID

Coverage

Date Contributor:PersonID

Identifier

Creator:PersonID

Rights

Object types

Machine Learning Model

Format

Training:MR Dataset

Docs:Binary Dataset

SizeModel type
Data Catalogue Entry

Title Subject

TypeDescription

Source Relation

Format

Language

Publisher:PubID

Coverage

Date Contributor:PersonID

Identifier

Creator:PersonID

Rights

Binary Dataset

Format

No of files
Data Catalogue Entry

Title Subject

TypeDescription

Source Relation

Format

Language

Publisher:PubID

Coverage

Date Contributor:PersonID

Identifier

Creator:PersonID

Rights

Property

Object links

Image Labelling

Figure 18: Ontology Evolution

OEDA - Pilot Architecture and Ontology Design | 27

28 | OEDA - Pilot Architecture and Ontology Design

8.0 Foundry Ontology

8.3 Object View

To better accommodate the wider range
of data sets expected within the offshore
sector, the example above shows four
data catalogue entry variations that
empower data providers and the wider
industry to provide the most appropriate
context. The first example is of a machine
readable dataset, where it is important to
understand the number of files, their total
size, lineage and attachments to samples.
For a binary dataset (e.g. a PDF report),
these properties may not be appropriate or
needed. For a Machine Learning Model, the
No of Files Property is not as significant
as Model Type and it may have object
links to the training data and to supporting
documentation. The final example
illustrates properties that may be useful for
an image dataset.

61 Palantir Technologies (2023) - Object Views - Applications Sidebar
62 Palantir Technologies (2023) - Palantir Learning
63 OEDA shall support means for prioritising data sets, either for release, update or additional context.
64 OEDA shall support a mechanism to enable users to provide direct feedback to Data Providers.
65 OEDA shall support data profiling for machine readable formats and support the hosting of sample data for user preview.
66 Data Industry expectations for data format, structure and size are required prior to previewing the data - particularly important for larger datasets.

Having a dedicated object type enables the designer to create and
pin appropriate applications suitable in that context through the
applications Sidebar61. In the example above, an image labelling
application is created to capture labels to support a computer
vision or object detection Machine Learning model project. This
concept can be extended to meet other OEDA Requirements
that involve a ticketing system or feedback capture workflow by
creating a backing dataset to capture comments or the status
of an entry, generating a suitable object type and linking them to
other objects.

As this is a common design pattern with most Enterprise
environments, the Foundry Training62 and Documentation provides
tutorials based on an aviation example to replicate the behaviour
discussed in this report. The Ontology and the associated
native features of Foundry will therefore satisfy OEDA and Data
Practitioner Requirements E763, E864, D365 and D666.

https://www.palantir.com/docs/foundry/object-views/config-app-sidebar/index.html
https://learn.palantir.com/

OEDA - Pilot Architecture and Ontology Design | 29

Embedding Enterprise
Workflows

9.0

Once the ontology has been constructed,
it can be explored with Foundry native
features such as Object Explorer, Vertex
for constructing and evaluating a system
level Digital Twin and Map for geospatial
based exploration. As stated for the pilot
architecture, it is recognised that using
Foundry native features requires some
degree of training on the platform. To
support a range of users, Foundry offers
an application building service based on
three components.

Workshop67 enables the creation of high-
quality desktop and mobile applications,
with a range of no-code, low-code and
code-based widgets utilising the ontology:

The example shows a Flight Alert Inbox
application, where there are predefined
filters in the top left, some high-level
metrics in the left side bar with a
histogram that can be used to further filter
the data. The relevant objects or in this
case, flight alerts, that match the filters
displayed in the centre and a preview pane
for a given object on the right-hand side.
There are two prominent actions in the top
right-hand side for this application.

Although this is an aviation example, the
components on display could easily be
transferred for any use case that requires
triage such as Requirement E7 to support
data providers prioritise data sets. A
similar workflow could be used to identify
objects or data catalogue entries that do
meet a metadata standard or assess the
impact of removing a dataset.

Figure 19: Example Workshop Application (from Palantir Documentation)

For reporting through Dashboard like Applications, Foundry offers Slate:

 Palantir Technologies (2023) - Application Building - Workshop

Figure 20: Example Slate Application (from Palantir Documentation)

https://www.palantir.com/docs/foundry/workshop/overview/index.html

30 | OEDA - Pilot Architecture and Ontology Design

9.0 Embedding Enterprise Workflows

Although Slate has a drag-and-drop interface, customisation
requires knowledge of web technologies and as such, is more
suitable for builders who are familiar with that type of development
workflow. The example above could be used to inform the
community and stakeholders basic metrics on the performance of
the catalogue. A single template to support data provider metrics
could be generated and shared industry wide.

Given two apparently overlapping capabilities with Workshop and
Slate, the differences from a user perspective can be minimal. For
the builder, Workshop provides a desktop and mobile application
development experience and Slate a web application experience.
Typically, transactional use cases may be better served with
Workshop, whereas high level metrics and exploration with
occasional actions may be better suited with Slate. Although
both use case types can be replicated in both development
environments.

For a user, once an application has been created it in effect enters
the Application Portal, which is equivalent to the Programs or
Start Menu on most desktop operating systems. For a sector wide
implementation, there is likely to be 10s or 100s of applications and

therefore to simplify the user experience Foundry offers a method
to customise the overall experience. For example, a data user will
not need access to the same applications as a data provider. To
group or integrate applications together, Foundry offers Carbon68:

Based on the user’s profile, it is possible to offer a custom Start
Screen that displays an integrated portal that combines Foundry
native features (such as Object Explorer, Contour for analysis
etc) with custom applications (from Workshop and / or Slate).
The example above provides the key features for any modern
operational platform. The header not only contains tabs but
integrates notifications from Foundry and various applications.

Despite the level of customisations and the builder experience
available to create Enterprise applications, if that is insufficient or
external access is required then the Foundry API69 is available that
provides access to the ontology but also the related actions. This
enables the builder to generate very similar applications outside of
Foundry if required. As stated for the pilot architecture, this feature
is required to provide users access to the catalogue for open
datasets without authentication.

 Palantir Technologies (2023) - Foundry API

Figure 21: Example Carbon Application
(from Palantir Documentation)

https://www.palantir.com/docs/foundry/api/index.html

OEDA - Pilot Architecture and Ontology Design | 31

Conclusion

10.0

It has been demonstrated that all
of the OEDA and data practitioner
requirements with the exception of
E3 - the platform basis should be
open-source software - can be met
with Foundry. Furthermore, features
such as the ontology can be used
to construct multiple approaches
in creating a data catalogue from
the same backing dataset but
with different object types. Once
an ontology has been defined,
constructing operational workflows
in an agile manner is supported
through Foundry native features or
using custom applications.

It’s proposed for the pilot that three potential interfaces
to the catalogue are provided to demonstrate Foundry’s
suitability for OEDA, using object viewer, a carbon
application and an externally hosted web application
to satisfy the requirement to provide access without
authentication.

32 | OEDA - Pilot Architecture and Ontology Design

Appendix A:
OEDA Requirements

11.0

The two tables are an extract from OEDA Report 1 - Data Sharing Landscape:

Req. ID Requirement Source(s) Compliance Statement

E1 OEDA shall support the OEDS defined data
catalogue.

From Action 2.1: Offshore Energy Data Catalogue
(OEDC).

Catalogue and metadata aggregator
demonstrated through the Pilot
Architecture (p13) and Data Integration
(p15) sections.

E2 OEDA shall support the OEDS defined Data
Sharing Fabric.

From Action 2.2: Data Sharing Fabric (DSF). Foundry’s security features can satisfy
this requirement through SSO and Data
Governance (p17).

E3 OEDA shall be based on open-source
software and open standards. It should
facilitate the Presumed Open principle.

The principle of being as “Open as possible”
as expanded in the EDiT report as: “Wherever
possible, it is proposed that these should be based
on open source software, open data licences and
open standards”

This requirement is not met as Foundry is
not Open Source software as discussed
in the Pilot Architecture (p13) section.

E4 OEDA shall support a customisable set of
attributes to act as metadata and have the
means to define differing levels of priorities
and controls.

Several metadata attributes have been defined, in
effect the superset from Ice Breaker One on Open
Net Zero , EDVP and Dublin Core but recognising
the need to set and control differing priorities.

The Ontology Design (p22) and its
Backing Dataset provides the flexibility
to meet this requirement.

E5 OEDA shall support external URL redirects,
HTTP based APIs, the means to redirect to
static files and other protocols to support
streaming applications.

The ONS Energy Data Visibility project stated
the protocols initially should be HTTP based,
but recognised with maturity it should support
streaming applications.

The URL to a source can be hosted as a
button or link in the Object View (p25).

E6 OEDA shall support metrics regarding the
data.

The EDVP identified the need to surface and
measure data quality - the subjective component
in assessing data quality will be influenced by
existing Industry standards-based initiatives. The
implication is users manually submitting feedback.

Requirement is met with multiple
features: Data Pipelines and Data
Lineage (p18), Object usage in the
Ontology Design (p22)

E7 OEDA shall support means for prioritising
data sets, either for release, update or
additional context.

Multiple reports including EDVP and EDTF cited a
two-phase approach to data sharing, where users
can see a list of potential sources and request
them. These are then prioritised for release based
on requests received.

Foundry can support a ticketing-like
application that would enable the
prioritisation of data based on feedback
through the Object View (p25) and
Embedding Enterprise Workflows (p29).

E8 OEDA shall support a mechanism to enable
users to provide direct feedback to data
providers.

Multiple reports have cited providing feedback
between users and data providers, the former to
help improve the data sources and the latter to
support internal business cases.

Requirement is met with multiple
features: Data Pipelines and Data
Lineage (p18), Object monitoring (p22),
a ticketing system through the Object
View (p25).

E9 OEDA shall display lineage or provide
the means to define a lineage between
datasets. OEDA shall support datasets to
be related using attributes.

EDVP also identified the need to establish both
data provider led and user driven relationship
mapping between datasets.

Full access to the Data Pipelines and
Data Lineage (p18) provides the visibility
even across organisational boundaries.

E10 OEDA shall support and maintain support
for the highest security standards in the
field of Authentication, Authorisation and
Zero Trust (including defence in depth).

OEDS report states in Action 3.2 Cyber Security:
“The offshore energy sector should continue to
prioritise cyber security, adhering to cyber security
best practice and disseminate progress to the
wider sector to help developing industries.”

The Security layer in the Foundry
Introduction (p9) demonstrates the
highest cybersecurity standards.

70 Energy Systems Catapult (2022) - Delivering a Digitalised Energy System
71 Icebreaker One & Open Net Zero (2023) - Open Net Zero by Icebreaker One
72 Hippo Digital (2020) - Energy Data Visibility [Discovery report]
73 Dublin Core Metadata Initiative (2023) - DublinCore

Table A1: Technical Requirements derived from the Energy Sector

https://es.catapult.org.uk/report/delivering-a-digitalised-energy-system/
https://opennetzero.org/
https://www.dublincore.org/specifications/dublin-core/

OEDA - Pilot Architecture and Ontology Design | 33

Req. ID Requirement Source(s) Compliance Evidence

D1 OEDA shall support the use of internal
and external repositories for dataset
documentation, context, data samples, API
definitions and other assets.

Data Industry expectations around open source
software development and documentation
culture.

Requirement is met with multiple
features: Data Pipelines and Data
Lineage (p18) illustrates workflows,
whilst Data Integration can ingest from
external repositories.

D2 OEDA shall support the use of long held
security tokens including but not limited to
client and server-side certificates - mutual
Transport Layer Security (mTLS) with
Hardware Security Modules (HSM) and/or
rotated authentication tokens (i.e., OAuth
2.0 / OIDC).

Recommendations from wider energy sector
reports are tilted towards Human interaction.
The OEDS report explicitly states the use of
machine-to-machine interactions. The data
industry expects the use of standard protocols
and approaches.

Demonstrated through the use of an
OAuth2 client in External Catalogue
Access (p14).

D3 OEDA shall support data profiling for
machine readable formats and support the
hosting of sample data for user preview.

Data industry expectations for data format,
structure and size are required prior to previewing
the data - particularly important for larger
datasets.

Through the Object View (p25), a profile
of the data on the Ontology can be
established or through custom Object
Types.

D4 OEDA shall support rich formatting of
content.

The open-source development culture also
provides rich documentation around a project
that users can collaborate on, which can also be
hosted externally.

Widgets in the Object View (p25)
illustrate support for rich formatting
through Markdown.

D5 OEDA shall support the exploration of data
with either internal or external platforms.

Kaggle has demonstrated that users prefer
to make their own assessments of the data
rather than rely on data provider attributes. This
includes the principle of the data being Open to
Explore, either externally much like the Python
Data ecosystem with Binder or internally through
hosted Jupyter computational notebooks.

Exploration of the data within the
platform and through external links is
demonstrated through Object Views
(p25).

D6 OEDA shall have the means to support a
variety of metadata formats (beyond the
current attribute-oriented needs).

Data Industry expectations for data format,
structure and size are required prior to previewing
the data - particularly important for larger
datasets.

The creation of bespoke Object Types
in the Ontology Design can cater for
different metadata formats as well as
choice of a Backing Dataset (p25& p28)

Table A2: Proposed Requirements from the Data Industry

Contact number:
+44 (0)1224 063200

Media enquiries:
pressoffice@netzerotc.com

Net Zero Technology Centre
20 Queens Road, Aberdeen AB15 4ZT

www.netzerotc.com

© 2024 Net Zero Technology Centre

